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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M�1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (�1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B � B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (�10�13 g) to the largest vertebrates and plants (�108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b � 1) or a simple Euclidean surface-to-
volume relationship (b � 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b � 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b � 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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measurements of intracellular transport of metabolic substrates
imply the existence of an efficient, organized network (8). Little
is known, however, about how characteristics of transport sys-
tems constrain rates of metabolic energy transformation at the
cellular, organelle, and molecular level. As we shall show, the
success of extending allometric scaling models down to the
molecular level raises the question of whether there is a real or
‘‘virtual’’ hierarchical transport system inside cells. Complex
structures inside cells and mitochondria have been discovered
recently that could be components of such a metabolic transport
network (9, 10). In any case, the data and their theoretical
underpinnings define the problem and suggest that systems that
supply cellular metabolism must have fractal-like properties.

We now investigate the interdependence of metabolic pro-
cesses from the whole organism down to the molecular level. For
convenience and because relevant data are readily available, we
develop the model in terms of mammals. However, the same
principles should apply both qualitatively and quantitatively to
all organisms that rely on biochemical reactions and catalysts of
the tricarboxylic acid cycle for aerobic metabolism and, in
principle, anaerobes as well. It is natural to subdivide an
organism into hierarchical levels reflecting pathways of energy
flow. At each level the system terminates in a well defined
‘‘fundamental’’ unit. Thus an entire mammal (o) can be viewed
as a hierarchy of successively linked networks beginning with a
circulatory system that terminates in capillaries. Energy and
materials are passed on to cells (c) where other pathways
transport them to mitochondria (m) where yet another system
transports them to the molecules of the respiratory complex (r)
in the inner mitochondrial membranes. These molecules, which
are the sites of biochemical aerobic energy transduction, are the
final terminal units of the entire metabolic system.

Consider the overall metabolic rate as a function of the masses
characterizing the various levels: B � B(M, Mc, Mm, Mr) (the
subscript o will generally be suppressed when writing M for the mass
of the entire mammal). A mammal is taken to be composed of Nc

o

closely packed identical cells, each with metabolic rate Bc(M, Mc,
Mm, Mr) such that Nc

o � M�Mc. Note that Bc, the metabolic rate of
an average cell in an intact mammal, depends on the overall body
mass, M, and as we now show must be different from its value in
vitro. From the conservation of energy for flow through the
circulatory system that supplies cells we have

B�M, Mc, Mm, Mr� � Nc
oBc�M, Mc, Mm, Mr�

�
M
Mc

Bc�M, Mc, Mm, Mr�. [2]

Combining Eq. 2 with Eq. 1, B(M, Mc, Mm, Mr) � B0M3/4, gives

Bc�M, Mc, Mm, Mr� �
B0Mc

M
1⁄4 [3]

such that the metabolic rate of cells in vivo decreases with increasing
body size as M�1/4 (2). Implicit in this derivation is the assumption
that capillaries and not cells are the terminal units of the circulatory
system such that capillary density varies with body size as M�1/4. If
cells were the terminal units such that each capillary supplied the
same number of cells independent of M, then Bc would be an
invariant, and cell or tissue density rather than being independent
of M would have to vary with body size as M�1/4.

Consider the extrapolation of B from intact mammals down to
the cellular level. First recall that B is directly proportional to the
overall f luid volume flow rate in the circulatory system. In ref.
6 it was shown how the character of fluid flow changes contin-
uously throughout the network from the aorta to the capillary
bed. In the former, pulsatile flow dominates, and little energy is
dissipated. However, further down the network, where tubes

narrow, viscosity begins to dominate, leading to the damping of
pulse waves such that almost no pulse survives into the capillaries
(see Appendix). The dominance of pulsatile flow in the overall
network plays a crucial role in deriving the three-quarter power
law for B, Eq. 1. As the size of a mammal decreases, a point is
reached at which even major arteries are too constricted to
support pulsatile waves: the system becomes so overdamped that
pulse waves can no longer propagate, and a significant amount
of energy is dissipated. In this case a calculation of B yields a
linear (M1) scaling with mass. The crossover point between this
and the M3/4 behavior is fairly narrow, and for simplicity we
assume that it occurs at a single value of M, which we denote by
�. In reality, the transition is smooth with the precise relation-
ship derivable analytically from ref. 6. Corrections due to this
behavior do not affect our conclusions.

We therefore write

B�M, Mc, Mm, Mr� � B0M
3⁄4, for M � � [4]

� � B0

�
1⁄4�M, for Mc � M � �

where continuity at M � � has been imposed. Eq. 4 leads to the
speculation that only mammals with mass greater than � could
have evolved, thereby suggesting a fundamental reason for a
minimum size for mammals. By using the model, a calculation
(see Appendix) predicts � to be of the order of 1 g, comparable
to the mass of a shrew, which is indeed the smallest mammal.

Now, imagine continuously decreasing the overall mass of the
organism below that of the smallest mammals (M � � � 1 g) until
only an isolated cell remains. According to Eq. 4, in this region
between the smallest mammal (M � �) and an isolated cell (M �
Mc) where no real mammals exist, metabolic rate extrapolates
linearly with M (B � B0M��1/4) rather than as a three-quarter
power law (B � B0M3/4). The in vitro value for the metabolic rate
of a mammalian cell is the value of Bc(M, Mc, Mm, Mr) when M �
Mc, namely Bc(Mc, Mc, Mm, Mr): but this is just the metabolic rate
of a cell inside an organism the size of the cell itself and therefore
represents a single isolated mammalian cell in tissue culture or
a unicellular organism operating at mammalian body tempera-
ture. Now, Eq. 2 gives B(Mc, Mc, Mm, Mr) � Bc(Mc, Mc, Mm, Mr),
but from Eq. 4 B(Mc, Mc, Mm, Mr) � B0Mc��1/4, leading to

Bc�Mc, Mc, Mm, Mr� �
B0Mc

�
1⁄4 . [5]

This equation predicts that metabolic rates of single cells isolated
from mammals of different body sizes should converge toward a
common invariant value, B0Mc��1/4, rather than preserving the
M�1/4 scaling, Eq. 3, that they exhibit in the intact organism.
Furthermore, this invariant value should approximate the maxi-
mum in vivo basal metabolic rate when M � �, the minimum size
for real mammals. In other words, the cellular metabolic rate in
shrews approximates the maximum possible power output avail-
able. Plots of in vivo and in vitro metabolic rates therefore
should intersect at M � �, where they both have the value given by
Eq. 5.

To test these predictions we have plotted data for metabolic rate
against mass on a logarithmic scale for 228 mammalian species (11)
ranging from a shrew (2.5 g) to an elephant (4 � 106 g) (see Fig. 1).
A least-squares fit gives B0 � 1.90 (�0.07) � 10�2 W�g�3/4 and b �
0.76 � 0.01, which is in good agreement with previous determina-
tions (2–4). Taking Mc � 3 � 10�9 g and � � 1 g in Eq. 5. gives
Bc(Mc, Mc, Mm, Mr) � 6 � 10�11 W for the invariant in vitro value
of cellular metabolic rate. This is in good agreement with the data
in Fig. 2, where we have plotted the in vitro metabolic rate for
cultured cells versus M, the mass of the mammal from which they
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were derived: these data give Bc � 3 � 10�11 W, independent of M,
as predicted. In Fig. 1 this is entered as a single red point at M �
Mc � 3 � 10�9 g and is the same as the value obtained by a linear
extrapolation from the smallest mammal down to the isolated cell.
Notice also that if whole mammal metabolic rate were naively
extrapolated down to the mass of a single cell by using the classic
three-quarter power law of Eq. 1, it would give a value of B0Mc

3/4 �
8 � 10�9 W. From Eq. 4 this is predicted to exceed the observed
value �3 � 10�11 W by a factor of (��Mc)1/4 � 135, which is in
satisfactory agreement with Fig. 1. Also shown in Fig. 2 is the
variation of the in vivo cellular metabolic rate with M; a power law
fit gives good agreement with the exponent of �1⁄4 predicted in Eq.
3. More significantly, it intercepts the invariant in vitro line at �1 g,
which is consistent with our theoretical estimate of � and the mass
of the smallest mammal (see Appendix).

Unlike cells, mitochondria and respiratory complexes are termi-
nal units of networks and therefore are required by the model to
have invariant properties with respect to the size of the mammal.
For example, the power, Br, generated by the molecules making up
the respiratory enzyme complex is governed predominantly by
biochemical dynamics, thus it should be invariant not only across all
mammals but across all aerobic organisms that rely on the tricar-
boxylic acid cycle. Actual respiratory turnover rates depend on
whether the complex is coupled and transport-limited (in vivo) or
uncoupled and not supply-limited (in vitro), thus the power gener-
ated is predicted to be different in the two cases. It is generally
accepted that eukaryotes evolved via symbiosis and that mitochon-
dria originally were free-living unicellular organisms. It therefore is
reasonable to suppose that mitochondria have metabolic transport
pathways similar to aerobic unicellular organisms. Assuming that
eukaryotes have evolved hierarchical structures that operate under
the general constraints of the network model, we speculate that
prokaryotes and mitochondria have self-similar metabolic pathways
with fractal-like networks that could be real or virtual and the
terminal units of which are respiratory complexes. In that case, their
power production (metabolic rates) should scale as M3/4. Thus, the

extrapolation of the scaling law down from the isolated cell to
mitochondria and the respiratory complex should parallel that of
Eq. 1 but scaled down by the factor (��Mc)1/4 � 135:

B � B0�Mc

�
�1⁄4

M
3⁄4. [6]

Setting M � Mm, Eq. 6 therefore predicts that the metabolic
power of a mitochondrion is Bm � B0(Mc��)1/4Mm

3/4; similarly,
that of the respiratory complex Br � B0(Mc��)1/4Mr

3/4. Notice that
Eq. 6 agrees with Eq. 5 in predicting the metabolic power of an
isolated cell at M � Mc. Because the respiratory complex, the
ultimate terminal unit of energy production, is universal for
aerobes, Eq. 6 also should describe the allometric scaling of
metabolic rate for aerobic unicellular organisms. In other words,
Eq. 6, which describes the scaling from the respiratory complex up
through mitochondria and isolated mammalian cells, should apply
also to unicellular organisms. This theory is confirmed by Fig. 3,
which shows that metabolic rates of unicellular organisms follow the
same three-quarter power scaling relationship as that derived for
mammalian cells, mitochondria, and respiratory enzymes.

We also can determine the number of average mitochondria
in a typical cell (12, 13); analogous to Eq. 2, the conservation of
energy implies B(M, Mc, Mm, Mr) � Nm

o (M)Bm. Because terminal
units are assumed to be invariant, we have dropped any func-
tional dependence of Bm on (M. . . Mr). Mitochondria are
constituents of cells, which in turn are tightly packed constituents
of the whole organism, and thus Nm

o � Nm
c Nc

o � (M�Mc)Nm
c ,

where Nm
c is the number of mitochondria in a cell. By using Eqs.

1 and 6 we therefore can write

Nm
c �M� � �Mc

M �� B
Bm

� � �Mc

Mm
�3⁄4��

M�1⁄4
, [7]

showing that the number of mitochondria in the average cell
decreases as M�1/4, whereas the total number in the whole

Fig. 1. Basal metabolic rate for mammals as a function of body mass on a logarithmic scale (blue circles). The solid blue line represents the predicted
three-quarter power scaling law, covering over six orders of magnitude in mass from a shrew to an elephant. Values for cells in vivo for these same mammals
are shown as a vertical blue band at a cellular mass of 3 � 10�9 g. These are related to the corresponding whole mammal values by a linear relationship, Eq. 2,
as shown by the dashed blue lines. The upper dashed blue line is predicted to intercept the solid blue line at M � �, close to the mass of a shrew, and to extrapolate
to the value for an isolated cell in vitro (red data point; see Fig. 2). Also shown (red dots) are in vivo values for a mitochondrion, the respiratory complex, and
a cytochrome oxidase molecule.
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organism should increase as M3/4. This relation implies that the
average density of mitochondria in the whole organism, �m

0 �
Nm

o �M, decreases as M�1/4, which is in agreement with observa-
tion (18). In addition, the ratio of average total mitochondrial
volume to whole body volume (assuming a common density) is
given by Nm

o Mm�M � (�Mm�McM)1/4 � 0.06 M�1/4, in agreement
with data (M in grams; ref. 19). It is noteworthy that Eq. 7 for
the average number of mitochondria in the average cell depends
only on the single parameter � and is independent of B0. Taking
Mm � 4 � 10�14 g gives Nm

c � 300 for a 50-kg mammal. These
are in vivo values. Eq. 7 also predicts that after several genera-
tions in tissue culture, the number of mitochondria in a cell
derived from a mammal of any body size should converge to a
single invariant value corresponding to that for M � � given by
(Mc�Mm)3/4 � 5,000.

Similar reasoning can be extended to the respiratory complex
with the result that the average total number in the organism, Nr

o

� (��Mc)1/4(M�Mr)3/4, therefore scaling as M3/4. The average
density in tissue, �r

o � Nr
o�M � (��McMr

3M)1/4, should decrease
similar to that of mitochondria, as M�1/4, in agreement with
observation (2, 14, 15). Taking Mr � 1 � 10�18 g, the number of
complexes in an average mitochondrion is predicted to be
Nr

m � (Mm�Mr)3/4 � 3,000, independent of M, in accord with the
idea that both are invariant units. This argument can be extended
in a similar fashion beyond the respiratory complex to the
cytochrome oxidase molecule, which is the terminal enzyme of
cellular respiration.

To test these ideas we have added three further data points to
Fig. 1 (16–19) corresponding to the metabolic power at 37°C of
a single mitochondrion, a single molecular unit of the mitochon-
drial respiratory complex (NADH dehydrogenase plus cyto-
chrome bc1 plus cytochrome oxidase), and a single molecule of
mammalian cytochrome oxidase. The power data for the mol-
ecules are calculated by multiplying the free energy of the
catalyzed reactions by the in vivo turnover rates in intact, resting
cells at 37°C [for cytochrome oxidase, reduction of O2 by
cytochrome c; for the respiratory complex, reduction of O2 by

NADH (20)]. Nearly all the metabolic power of aerobic organ-
isms is produced by these reactions; the molecular enzyme
complexes that catalyze them constitute the irreducible units of
cellular respiration or, viewed another way, the ultimate terminal
units of the transport network(s) that supply aerobic metabo-
lism. As predicted, the data are well fit by Eq. 6, including both
the slope and the normalization constant (Fig. 3).

A summary of our analysis of the scaling of metabolic rate,
including both predictions and empirical evaluation, is shown in
Fig. 4. The entire plot spans 27 decades of mass and is fitted with
just three parameters, B0, b, and �. The latter two, b � 0.75 and
� � 1 g, are determined by the model, leaving only a single free
parameter, B0, the overall scale of metabolism. Thus, over this
entire range, the scaling exponent is very close to 3⁄4 except for
the region between the smallest mammal and the invariant
isolated cell where it is very close to being linear. We know of
no previous theory that could predict how the power law obeyed
by intact animals can be extrapolated to an isolated cell, a
mitochondrion, and an enzyme molecule of the respiratory
complex. This argument could be turned around: knowing the
scale of power generation at the molecular level is sufficient to
predict the metabolic rate of individual mitochondria and cells
(whether in vitro or in vivo) as well as intact mammals.

The data point for the power generated by the respiratory
complex shown in Fig. 1 is for a coupled unit in vivo. The value
for an uncoupled unit, which represents the maximum output of
the respiratory complex, is �300 times larger. This factor
propagates through the hierarchy of networks such that ulti-
mately the maximum metabolic output of both a mitochondrion
and an isolated cell should be of the order of 300 times larger
than their basal rates. Naive extrapolation to intact mammals
would suggest that maximum aerobic capacity also should be
�300 times basal metabolic rate. In fact, this is an absolute limit
that is never reached because of limitations on the supply
network. For example, f light muscle cells of hovering humming-
birds can indeed metabolize at �200 times their basal rates (2,
8). However, the coupled circulatory and respiratory systems
cannot distribute metabolites and oxygen to all tissues simulta-
neously at this rate. During maximum activity, supply to non-

Fig. 2. Metabolic power of single mammalian cells as a function of body mass
on a logarithmic scale. Blue circles represent cells in vivo calculated for the
same mammals as described in Fig. 1. Red circles represent cultured cells in
vitro of six mammalian species: mouse, hamster, rat, rhesus monkey, human,
and pig (32). The solid blue line is the M�1/4 prediction for cells in vivo from Eq.
3, and the solid red line is the predicted constant for cells in vitro from Eq. 5.
The two lines are predicted to intersect at M � � � 1 g, at which they have the
value B � 3 � 10�11 W.

Fig. 3. Metabolic power of an isolated mammalian cell, mitochondrion, respi-
ratorycomplex,andcytochromeoxidasemolecule (reddots)asa functionof their
mass on a logarithmic scale. The solid red line is the M3/4 prediction (Eq. 6). Also
shown are data for unicellular organisms (green dots), which, when adjusted to
mammalian body temperature, closely follow the same scaling relationship.
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muscle tissues is reduced and the whole organism aerobic
metabolic rate is increased over basal levels by a maximal factor
of 10–30, an order of magnitude less than the factor of 300 that
would be observed if all respiratory complexes in all mitochon-
dria in all cells could be supplied so as to simultaneously
transform energy at maximal rates. The factor of 10–30 is similar
to the ratio of maximally stimulated or decoupled cells to that of
the metabolic rate of resting cells.

Lifespan (T) also satisfies an allometric scaling law, although the
scatter of data are significantly greater than for metabolic rate (2,
21), partly because of the problem of obtaining reliable data.
Nevertheless, data for mammals suggest that T � T0M1/4. As with
metabolic rate, the exponent is essentially the same for all taxo-
nomic groups, but the normalization, T0, differs. Now, from Eq. 1
the specific metabolic rate B� 	 (B�M), the power required to
support a unit mass of an organism, scales as B� � B� 0M�1/4. This
implies the remarkable result that on the average all mammals use
approximately the same amount of metabolic energy to support a
given unit mass during their lifetimes. This quantity of energy is
given approximately by TB�M � 4 � 106 J�g�1, corresponding to
roughly 10 mol of O2 per gram of mass per lifespan (assuming that
the average lifetime metabolic rate is 2.5 times the basal value).
Another intriguing invariant is the number of heartbeats in a
lifetime, �1.5 � 109 for mammals. This value follows from the
empirical observation (2) that heart rate scales as M�1/4, a result
predicted by the model for the cardiovascular transport network (6).

Although these invariants have been recognized for some time
(2, 21, 22), the possible implications at the molecular level,
suggested by Fig. 4, have not. A more fundamental relevant
universal invariant quantity is the number of turnovers in a
lifetime of the molecular respiratory complexes per cell, which
we calculate to be �1.5 � 1016. This observation is consistent
with the widely held radical damage hypothesis of aging and
mortality (23). Free radicals and other oxidizing compounds are
byproducts of respiratory metabolism that may react with vital
cellular components, causing cumulative and ultimately lethal
damage. It perhaps is noteworthy that pigeons and rats have

approximately the same body mass and metabolic rate yet rats
live for up to 4 years, whereas the maximum lifespan of pigeons
is almost 40 (23). Perhaps not coincidentally, rat mitochondria
produce radicals at a rate 10 times greater than pigeon mito-
chondria. The invariant O2 consumption per cell per lifespan that
arises from Fig. 4 suggests specific theoretical and experimental
studies to test whether production rates of free radicals and other
byproducts of metabolism can be a major cause of mortality and
the allometric scaling of lifespan.

As already mentioned, there now seems to be general agreement
that eukaryotic organisms evolved via symbiosis and that mito-
chondria and chloroplasts were once free-living prokaryotes. This
implies a three-stage evolution of the network that supplies aerobic
metabolism of mammals and other multicellular eukaryotes. The
aerobic bacteria that were the ancestors of mitochondria possessed
networks that shunted metabolites efficiently to the enzymes of the
respiratory complex. When unicellular eukaryotes evolved they
were able to take advantage of the energy transforming systems of
their mitochondrial symbionts. To do so, however, they had to
evolve efficient networks to convey materials between cell surfaces
and the mitochondria. Finally, the evolution of large, complex
multicellular organisms required the evolution of efficient circula-
tory and respiratory systems to convey metabolic substrates from
specialized structures on the body surface to the cells. Interestingly,
all these systems seem to exhibit the features of quarter-power
allometric scaling predicted by our fractal-like models of biological
networks.

In conclusion, we have shown how a theory of allometric
scaling integrates power production across all levels of biological
organization from the molecules of the respiratory complex,
through mitochondria to unicellular organisms and isolated cells
in tissue culture, and on up to multicellular organisms. This
theory, based on fractal-like distribution networks, can explain
variations in metabolic rate over an amazing 27 orders of
magnitude. Perhaps one of our most intriguing results is the
prediction that the metabolic power of a cultured mammalian
cell should be the same, independent of the mammal of origin,

Fig. 4. A logarithmic plot of metabolic power as a function of mass, which summarizes Figs. 1–3. The entire range is shown, covering 27 orders of magnitude
from a cytochrome oxidase molecule and respiratory complex through a mitochondrion and a single cell in vitro (red dots), up to whole mammals (blue dots).
The solid red and blue lines through the corresponding dots are the M3/4 predictions. The dashed blue line is the linear extrapolation from M � �, the approximate
mass predicted and observed for the smallest mammal to an isolated mammalian cell, as shown in Eq. 4. The open circles represent the cellular data shown in
Fig. 2: red indicates cells in vitro, and blue indicates cells in vivo.
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from shrews to whales. This result is in marked contrast to cells
in vivo, where they are highly constrained by macroscopic
transport networks that force their energy production rates to
decrease as M�1/4. Once the network constraint is removed, as
in a culture, energy rates of cells from all mammals converge to
the same predicted value as shown in Fig. 2.

A critical test of the generality of our theoretical model will be
to extend it explicitly to include unicellular organisms and subcel-
lular structures, to characterize the pathways of intracellular trans-
port, and to identify the cellular organelles and molecular structures
involved. Our results suggest that all biological transport systems
that exhibit quarter-power allometric scaling must have the same
three basic properties of the general model: a space-filling branch-
ing network extends throughout the whole organism, the final
branch of the network is a size-invariant unit, and the energy
required to transport materials is minimized. Finally, the molecular
respiratory enzymes must represent the indivisible ‘‘lower cutoff’’ or
ultimate terminal unit of the fractal-like transport systems that
supply aerobic metabolism. The success of this explanation suggests
how nature, via natural selection, has exploited a few very general
physical, geometrical, and biological principles to produce the
myriad diversity of life.

Appendix: Extrapolation of Metabolic Rate and the Mass of
the Smallest Mammal
In arteries, the minimization of energy expenditure requires im-
pedance matching for pulse waves at branch points, thereby leading
to area-preserving branching, meaning that the cross-sectional area
of a parent branch is equal to the sum of those of the daughters;
thus, the ratio of their radii is n�1/2, where n, the branching ratio,
is the number of daughter branches per parent branch (6). Together
with the space-filling constraint, this leads to metabolic rate (the
overall volume flow rate) scaling as M3/4. In capillaries, on the other
hand, radii are so small that significant pulsatile flow cannot be
sustained: viscosity dominates and waves are damped heavily,
minimization of energy dissipation then leads to Murray’s law
where the ratio of radii is n�1/3, and the branching is area-increasing
such that the flow rate almost ceases. Although the branching
changes continuously from one mode to the other, the region of
change is relatively narrow, and its location (as measured by the
number of branchings from the capillaries) is independent of body
mass, M. As the overall size of the organism decreases, the number
of area-preserving branchings decreases until a point is reached at
which only area-increasing branchings remain; the system is over-

damped and can no longer support pulsatile waves. The value of M
at this point defines �. The dominance of pulsatile flow in the
overall network plays a crucial role in deriving the three-quarter
power law for B (Eq. 1). As body size decreases, a point is reached
at which even major arteries are too constricted to support pulsatile
waves; the system becomes so overdamped that waves can no longer
propagate, and significant energy is dissipated.

Eq. 4. implies that specific metabolic rate, B� , the energy required
to sustain a unit mass of an organism, changes from a decreasing
function of size, B0M�1/4 when M 
 �, to a constant, B0��1/4, when
M � �. Now the inverse of B� is a measure of the efficiency of the
system, thus this implies that there is a dramatic drop in efficiency
when M � � because of large energy dissipation from overdamping
in the network. This strongly suggests that only mammals with M 

� could have evolved, thereby providing a fundamental reason for
a minimum size for mammals.

This minimum size (�) can be calculated as follows: for a given
mammal, the crossover point from pulsatile to nonpulsatile flow
occurs when (6) r2�l � 8���c0, where r is the radius, l is the length
of the corresponding branch vessel, � is the viscosity of blood, � is
its density, and c0 � (Eh�2�r)1/2 � 600 cm�sec�1 (where E is the
modulus of elasticity of the vessel wall and h is its thickness). As the
overall size of the mammal decreases, the branching level at which
the crossover occurs eventually reaches the aorta. The mass of the
mammal in which this occurs defines �. Using the scaling relations,
r � M3/8 and l � M1/4, leads straightforwardly to � � M(8�l��c0r2)2,
where M is the mass of an arbitrary mammal. Taking � � 1 g�cm�3,
� � 0.04 poise, and for a 10-kg mammal, r � 0.75 cm and l � 20 cm
gives � � 3 g, close to the mass of a shrew, which is indeed the
smallest mammal. Given the approximations made, the precise
value of � should not be taken too seriously; however, the calcu-
lation does show that the model predicts � to be in the range of 1 g,
which, for convenience, is the value used in the text for estimating
related quantities. Because most of these estimates depend on �1/4,
the precise value of � is not critical.
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